In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.
Description
Let
be a square system of
n linear equations, where:
When and are known, and is unknown, we can use the Jacobi method to approximate . The vector denotes our initial guess for (often for ). We denote as the k-th approximation or iteration of , and is the next (or k+1) iteration of .
Matrix-based formula
Then
A can be decomposed into a
diagonal matrix component
D, a lower triangular part
L and an upper triangular part
U:
The solution is then obtained iteratively via
Element-based formula
The element-based formula for each row
is thus:
The computation of
requires each element in
except itself. Unlike the Gauss–Seidel method, we cannot overwrite
with
, as that value will be needed by the rest of the computation. The minimum amount of storage is two vectors of size
n.
Algorithm
'''Input:''' , (diagonal dominant) matrix ''A'', right-hand side vector ''b'', convergence criterion
'''Output:'''
'''Comments:''' pseudocode based on the element-based formula above
'''while''' convergence not reached '''do'''
'''for''' ''i'' := 1 '''step until''' n '''do'''
'''for''' ''j'' := 1 '''step until''' n '''do'''
'''if''' ''j'' ≠ ''i'' '''then'''
'''end'''
'''end'''
'''end'''
increment ''k''
'''end'''
Convergence
The standard convergence condition (for any iterative method) is when the
spectral radius of the iteration matrix is less than 1:
A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute value of the diagonal term is greater than the sum of absolute values of other terms:
The Jacobi method sometimes converges even if these conditions are not satisfied.
Note that the Jacobi method does not converge for every symmetric positive-definite matrix. For example,
Examples
Example question
A linear system of the form
with initial estimate
is given by
\begin{bmatrix}
2 & 1 \\
5 & 7 \\
\end{bmatrix},
\ b=
\begin{bmatrix}
11 \\
13 \\
\end{bmatrix}
\quad \text{and} \quad x^{(0)} =
\begin{bmatrix}
1 \\
1 \\
\end{bmatrix} .
We use the equation
, described above, to estimate
. First, we rewrite the equation in a more convenient form
, where
and
. From the known values
we determine
as
Further,
is found as
With
and
calculated, we estimate
as
:
The next iteration yields
This process is repeated until convergence (i.e., until
is small). The solution after 25 iterations is
7.111\\
-3.222
\end{bmatrix}
.
Example question 2
Suppose we are given the following linear system:
\begin{align}
10x_1 - x_2 + 2x_3 & = 6, \\
-x_1 + 11x_2 - x_3 + 3x_4 & = 25, \\
2x_1- x_2+ 10x_3 - x_4 & = -11, \\
3x_2 - x_3 + 8x_4 & = 15.
\end{align}
If we choose as the initial approximation, then the first approximate solution is given by
Using the approximations obtained, the iterative procedure is repeated until the desired accuracy has been reached. The following are the approximated solutions after five iterations.
|
|
0.6 | 2.27272 | -1.1 | 1.875 |
1.04727 | 1.7159 | -0.80522 | 0.88522 |
0.93263 | 2.05330 | -1.0493 | 1.13088 |
1.01519 | 1.95369 | -0.9681 | 0.97384 |
0.98899 | 2.0114 | -1.0102 | 1.02135 |
The exact solution of the system is .
Python example
import numpy as np
ITERATION_LIMIT = 1000
-
initialize the matrix
A = np.array([10.,,
[-1., 11., -1., 3.],
[2., -1., 10., -1.],
[0.0, 3., -1., 8.]])
-
initialize the RHS vector
b = np.array(6.,)
-
prints the system
print("System:")
for i in range(A.shape0):
row = [f"{A[i, j]}*x{j + 1}" for j in range(A.shape[1])]
print(f'{" + ".join(row)} = {b[i]}')
print()
x = np.zeros_like(b)
for it_count in range(ITERATION_LIMIT):
if it_count != 0:
print(f"Iteration {it_count}: {x}")
x_new = np.zeros_like(x)
for i in range(A.shape[0]):
s1 = np.dot(A[i, :i], x[:i])
s2 = np.dot(A[i, i + 1:], x[i + 1:])
x_new[i] = (b[i] - s1 - s2) / A[i, i]
if x_new[i] == x_new[i-1]:
break
if np.allclose(x, x_new, atol=1e-10, rtol=0.):
break
x = x_new
print("Solution: ")
print(x)
error = np.dot(A, x) - b
print("Error:")
print(error)
Weighted Jacobi method
The weighted Jacobi iteration uses a parameter
to compute the iteration as
with
being the usual choice.
From the relation
, this may also be expressed as
- .
Convergence in the symmetric positive definite case
In case that the system matrix
is of symmetric positive-definite type one can show convergence.
Let be the iteration matrix.
Then, convergence is guaranteed for
\rho(C_\omega) < 1
\quad \Longleftrightarrow \quad
0 < \omega < \frac{2}{\lambda_\text{max} (D^{-1}A)} \,,
where
is the maximal eigenvalue.
The spectral radius can be minimized for a particular choice of as follows
where is the matrix condition number.
See also
-
Gauss–Seidel method
-
Successive over-relaxation
-
Iterative method § Linear systems
-
Gaussian Belief Propagation
-
Matrix splitting
External links